Теоретическая и Экспериментальная Психология
ISSN 2073-0861
eISSN 2782-5396
En Ru
ISSN 2073-0861
eISSN 2782-5396
Роль осцилляторной активности мозга в осуществлении когнитивного контроля внимания

Роль осцилляторной активности мозга в осуществлении когнитивного контроля внимания

Аннотация

В обзорной статье представлены сведения о психофизиологических механизмах функционирования когнитивного контроля внимания. Показано, что, помимо особенностей структурной организации, наиболее эффективный контроль внимания осуществляется в том числе за счет свойств пространственно-временной динамики функциональных связей мозга. Подчеркивается роль динамической функциональной связности и ее изменчивости во времени как источника индивидуальных различий в когнитивном контроле.

Литература

  1. Alba G., Vila J., Rey B., Montoya P., Muñoz M.Á. The relationship between heart rate variability and electroencephalography functional connectivity variability is associated with cognitive flexibility // Frontiers in Human Neuroscience. – 2019. – Vol. 13. – Art. 64. doi: 10.3389/fnhum.2019.00064.
  2. Ambrosini E., Arbula S., Rossato C., Pacella V., Vallesi A. Neuro-cognitive architecture of executive functions: A latent variable analysis // Cortex. – 2019. – Vol. 119. – P. 441–456.
  3. Ambrosini E., Vallesi A. Asymmetry in prefrontal resting-state EEG spectral power underlies individual differences in phasic and sustained cognitive control // NeuroImage. – 2016. – Vol. 124. – Pt. A. – P. 843–857.
  4. Arviv O., Goldstein A., Shriki O. Near-сritical dynamics in stimulus-evoked activity of the human brain and its relation to spontaneous resting- state activity // Journal of Neuroscience. – 2015. – Vol. 35. – No. 41. – P. 13927–13942.
  5. Atasoy S., Deco G., Kringelbach M.L. Playing at the Edge of Criticality: Expanded Whole-Brain Repertoire of Connectome-Harmonics / In: Tomen N., Herrmann J., Ernst U. (eds.). The Functional Role of Critical Dynamics in Neural Systems. Springer Series on Bio- and Neurosystems. Springer, Cham. – 2019. – Vol. 11. – P. 27–45. doi: 10.1007/978-3-030-20965-0_2.
  6. Avena-Koenigsberger A., Misic B., Sporns O. Communication dynamics in complex brain networks // Nature Reviews Neuroscience. – 2018. – Vol. 19. – No. 1. – P. 17–33.
  7. Baldassarre A., Lewis C.M., Committeri G., Snyder A.Z., Romani G.L., Corbetta M. Individual variability in functional connectivity predicts performance of a perceptual task // Proceedings of the National Academy of Sciences of USA. – 2012. – Vol. 109. – No. 9. – P. 3516–3521.
  8. Bertolero M.A., Yeo B.T.T., D’Esposito M. The modular and integrative functional architecture of the human brain // Proceedings of the National Academy of Sciences of the United States of America. – 2015. – Vol. 112. – No. 49. – E6798–E6807.
  9. Botvinick M., Braver T. Motivation and cognitive control: From behavior to neural mechanism // Annual Review of Psychology. – 2015. – Vol. 66. – No. 1. – P. 83–113.
  10. Botvinick M.M., Cohen J.D. The сomputational and neural basis of cognitive control: Charted territory and new frontiers // Cognitive Science. – 2014. – Vol. 38. – No. 6. – P. 1249–1285.
  11. Braver T.S., Kizhner A., Tang R., Freund M.C., Etzel J.A. The dual mechanisms of cognitive control project // Journal of Cognitive Neuroscience. – 2021. – Vol. 33. – No. 9. – P. 1990–2015.
  12. Cai W., Chen T., Ryali S., Kochalka J., Li C.-S.R., Menon V. Causal interactions within a frontal- cingulate-parietal network during cognitive control: Convergent evidence from a multisite- multitask investigation // Cerebral Cortex. – 2016. – Vol. 26. – No. 5. – P. 2140–2153.
  13. Carter C.S., Krug M.K. Dynamic Сognitive Сontrol and Frontal-Cingulate Interactions / Cognitive Neuroscience of Attention, 2nd ed. – New York, NY, US: Guilford Press, 2012. – P. 89–98.
  14. Cavanagh J.F., Frank M.J. Frontal theta as a mechanism for cognitive control // Trends in Cognitive Sciences. – 2014. – Vol. 18. – No. 8. – P. 414–421.
  15. Cocchi L., Gollo L.L., Zalesky A., Breakspear M. Criticality in the brain: A synthesis of neurobiology, models and cognition // Progress in Neurobiology. – 2017. – Vol. 158. – P. 132–152.
  16. Cocchi L., Zalesky A., Fornito A., Mattingley J.B. Dynamic cooperation and competition between brain systems during cognitive control // Trends in Cognitive Sciences. – 2013. – Vol. 17. – No. 10. – P. 493–501.
  17. Cooper P.S., Darriba Á., Karayanidis F., Barceló F. Contextually sensitive power changes across multiple frequency bands underpin cognitive control // NeuroImage. – 2016. – Vol. 132. – P. 499–511.
  18. Corbetta M., Shulman G.L. Control of goal-directed and stimulus-driven attention in the brain // Nature Reviews Neuroscience. – 2002. – Vol. 3. – No. 3. – P. 201–215.
  19. Vries I.E.J. de, Slagter H.A., Olivers C.N.L. Oscillatory control over representational states in working memory // Trends in Cognitive Sciences. – 2020. – Vol. 24. – No. 2. – P. 150–162.
  20. Deary I.J., Cox S.R., Hill W.D. Genetic variation, brain, and intelligence differences // Molecular Psychiatry, 2021. doi: 10.1038/s41380- 021-01027-y. Online ahead of print.
  21. Deco G., Jirsa V.K. Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors // Journal of Neuroscience. – 2012. – Vol. 32. – No. 10. – P. 3366–3375.
  22. Douw L., Wakeman D.G., Tanaka N., Liu H., Stufflebeam S.M. State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility // Neuroscience. – 2016. – Vol. 339. – P. 12–21.
  23. Elton A., Gao W. Task‐related modulation of functional connectivity variability and its behavioral correlations // Human Brain Mapping. – 2015. – Vol. 36. – No. 8. – P. 3260–3272.
  24. Engle R.W. Working memory and executive attention: A revisit // Perspectives on Psychological Science. – 2018. – Vol. 13. – No. 2. – P. 190–193.
  25. Fingelkurts A.A., Fingelkurts A.A., Neves C.F.H. Consciousness as a phenomenon in the operational architectonics of brain organization: Criticality and self-organization considerations: Emergent Critical Brain Dynamics // Chaos, Solitons & Fractals. – 2013. – Vol. 55. – P. 13–31.
  26. Friedman N.P., Miyake A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure: Is a «single» brain model sufficient? // Cortex. – 2017. – Vol. 86. – P. 186–204.
  27. Friedman N.P., Miyake A., Young S.E., DeFries J.C., Corley R.P., Hewitt J.K. Individual differences in executive functions are almost entirely genetic in origin // Journal of Experimental Psychology: General. – 2008. – Vol. 137. – No. 2. – P. 201–225.
  28. Fries P. Rhythms for сognition: Communication through coherence // Neuron. – 2015. – Vol. 88. – No. 1. – P. 220–235.
  29. Friese U., Daume J., Göschl F., König P., Wang P., Engel A.K. Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control // Scientific Reports. – 2016. – Vol. 6. – Art. 32775. doi: 10.1038/srep32775.
  30. Fuster J. The Prefrontal Cortex. – Academic Press, 2015. – 461 p.
  31. Goldman-Rakic P.S. Architecture of the prefrontal cortex and the central executive // Annals of the New York Academy of Sciences. – 1995. – Vol. 769. – No. 1. – P. 71–84.
  32. Gordon S., Todder D., Deutsch I., Garbi D., Getter N., Meiran N. Are resting state spectral power measures related to executive functions in healthy young adults? // Neuropsychologia. – 2018. – Vol. 108. – P. 61–72.
  33. Gratton G., Cooper P., Fabiani M., Carter C.S., Karayanidis F. Dynamics of cognitive control: Theoretical bases, paradigms, and a view for the future // Psychophysiology. – 2018. – Vol. 55. – No. 3. – e13016. doi: 10.1111/psyp.13016.
  34. Heidlmayr K., Kihlstedt M., Isel F. A review on the electroencephalography markers of Stroop executive control processes // Brain and Cognition. – 2020. – Vol. 146. – Art. 105637. doi: 10.1016/j.bandc.2020.105637.
  35. Hughes C. Changes and challenges in 20 years of research into the development of executive functions // Infant and Child Development. – 2011. – Vol. 20. – No. 3. – P. 251–271.
  36. Irrmischer M., Poil S.-S., Mansvelder H.D., Intra F.S., Linkenkaer‐Hansen K. Strong longrange temporal correlations of beta/gamma oscillations are associated with poor sustained visual attention performance // European Journal of Neuroscience. – 2018. – Vol. 48. – No. 8. – P. 2674–2683.
  37. Jamadar S., Thienel R., Karayanidis F. Task switching processes // Brain Mapping: An Encyclopedic Reference. – 2015. – Vol. 3. – P. 327–335.
  38. Jiang L., Qiao K., Sui D., Zhang Z., Dong H.-M. Functional criticality in the human brain: Physiological, behavioral and neurodevelopmental correlates // PloS One. – 2019. – Vol. 14. – No. 3. – e0213690. doi: 10.1371/journal.pone.0213690.
  39. Kitzbichler M.G., Smith M.L., Christensen S.R., Bullmore E. Broadband criticality of human brain network synchronization // PLoS Computational Biology. – 2009. – Vol. 5. – No. 3. – e1000314. doi: 10.1371/journal.pcbi.1004174.
  40. Kovacs K., Conway A.R.A. Process overlap theory: A unified account of the general factor of intelligence // Psychological Inquiry. – 2016. – Vol. 27. – No. 3. – P. 151–177.
  41. Kovacs K., Conway A.R.A. What is IQ? Life beyond «General Intelligence» // Current Directions in Psychological Science. – 2019. – Vol. 28. – No. 2. – P. 189–194.
  42. Krönke K.-M., Wolff M., Shi Y., Kräplin A., Smolka M.N., Bühringer G., Goschke T. Functional connectivity in a triple-network saliency model is associated with real-life self-control // Neuropsychologia. – 2020. – Vol. 149. – Art. 107667. doi: 10.1016/j.neuropsychologia. 2020.107667.
  43. Lee H., Golkowski D., Jordan D., Berger S., Ilg R., Lee J., Mashour G.A., Lee U., Avidan M.S., Blain-Moraes S., Golmirzaie G., Hardie R., Hogg R., Janke E., Kelz M.B., Maier K., Mashour G.A., Maybrier H., McKinstry-Wu A., Muench M., Ochroch A., Palanca B.J.A., Picton P., Schwarz E.M., Tarnal V., Vanini G., Vlisides P.E. Relationship of critical dynamics, functional connectivity, and states of consciousness in large-scale human brain networks // NeuroImage. – 2019. – Vol. 188. – P. 228–238.
  44. Lemire-Rodger S., Lam J., Viviano J.D., Stevens W.D., Spreng R.N., Turner G.R. Inhibit, switch, and update: A within-subject fMRI investigation of executive control // Neuropsychologia. – 2019. – Vol. 132. – Art. 107134. doi: 10.1016/j.neuropsychologia.2019.107134.
  45. Mahjoory K., Cesnaite E., Hohlefeld F.U., Villringer A., Nikulin V.V. Power and temporal dynamics of alpha oscillations at rest differentiate cognitive performance involving sustained and phasic cognitive control // Neuro- Image. – 2019. – Vol. 188. – P. 135–144.
  46. Massobrio P., Pasquale V. Complexity of Network Connectivity Promotes Self-organized Criticality in Cortical Ensembles // The Functional Role of Critical Dynamics in Neural Systems / Springer Series on Bio- and Neurosystems. Eds. N. Tomen, J.M. Herrmann, U. Ernst. – Cham: Springer International Publishing, 2019. – P. 47–68.
  47. Menon V., D’Esposito M. The role of PFC networks in cognitive control and executive function // Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. – 2021. doi: 10.1038/ s41386-021-01152-w.
  48. Niendam T.A., Laird A.R., Ray K.L., Dean Y.M., Glahn D.C., Carter C.S. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions // Cognitive, Affective, & Behavioral Neuroscience. – 2012. – Vol. 12. – No. 2. – P. 241–268.
  49. Nigg J.T. Annual Research Review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology // Journal of Child Psychology and Psychiatry, and allied disciplines. – 2017. – Vol. 58. – No. 4. – P. 361–383.
  50. Nikulin V.V., Brismar T. Long-range temporal correlations in electroencephalographic oscillations: Relation to topography, frequency band, age and gender // Neuroscience. – 2005. – Vol. 130. – No. 2. – P. 549–558.
  51. Palva S., Palva J.M. New vistas for α-frequency band oscillations // Trends in Neurosciences. – 2007. – Vol. 30. – No. 4. – P. 150–158.
  52. Palva S., Palva J.M. Functional roles of alpha- band phase synchronization in local and large-scale cortical networks // Frontiers in Psychology. – 2011. – Vol. 2. – P. 204. doi: 10.3389/ fpsyg.2011.00204.
  53. Plomin R., Kovas Y. Generalist genes and learning disabilities // Psychological Bulletin. – 2005. – Vol. 131. – No. 4. – P. 592–617.
  54. Poil S.-S., Hardstone R., Mansvelder H.D., Linkenkaer-Hansen K. Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks // Journal of Neuroscience. – 2012. – Vol. 32. – No. 29. – P. 9817–9823.
  55. Rubinov M., Sporns O., Thivierge J.-P., Breakspear M. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons // PLoS Computational Biology. – 2011. – Vol. 7. – No. 6. – e1002038. doi: 10.1371/journal.pcbi.1002038.
  56. Sadaghiani S., D’Esposito M. Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness // Cerebral Cortex. – 2015. – Vol. 25. – No. 9. – P. 2763–2773.
  57. Sadaghiani S., Kleinschmidt A. Brain networks and α-oscillations: Structural and functional foundations of cognitive control // Trends in Cognitive Sciences. – 2016. – Vol. 20. – No. 11. – P. 805–817.
  58. Shin C.-W., Kim S. Self-organized criticality and scale-free properties in emergent functional neural networks // Phys. Rev. E Stat. Nonlin. Soft Matter Phys. – 2006. – Vol. 74. – No. 4. – Pt. 2. – Art. 045101. doi: 10.1103/Phys- RevE.74.045101.
  59. Shine J.M., Poldrack R.A. Principles of dynamic network reconfiguration across diverse brain states: Brain Connectivity Dynamics // NeuroImage. – 2018. – Vol. 180. – P. 396–405.
  60. Shirer W.R., Ryali S., Rykhlevskaia E., Menon V., Greicius M.D. Decoding subject-driven cognitive states with whole-brain connectivity patterns // Cerebral Cortex. – 2012. – Vol. 22. – No. 1. – P. 158–165.
  61. Song B., Ma N., Liu G., Zhang H., Yu L., Liu L., Zhang J. Maximal flexibility in dynamic functional connectivity with critical dynamics revealed by fMRI data analysis and brain network modelling // Journal of Neural Engineering. – 2019. – Vol. 16(5). – Art. 056002. doi: 10.1088/1741-2552/ab20bc.
  62. Spitzer B., Haegens S. Beyond the status quo: A role for beta oscillations in endogenous content (re)activation // eNeuro. – 2017 Aug. – Vol. 4(4): ENEURO.0170-17.2017. doi: 10.1523/ENEURO.0170-17.2017.
  63. Sridharan D., Levitin D.J., Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default- mode networks // Proceedings of the National Academy of Sciences of USA. – 2008. – Vol. 105. – No. 34. – P. 12569–12574.
  64. Stuss D.T., Benson D.F. The Frontal Lobes and Control of Cognition and Memory / The Frontal Lobes Revisited. – Psychology Press, 1987.
  65. Van Diepen R.M., Foxe J.J., Mazaheri A. The functional role of alpha-band activity in attentional processing: the current zeitgeist and future outlook: Attention & perception // Current Opinion in Psychology. – 2019. – Vol. 29. – P. 229–238.
  66. Wallis G., Stokes M., Cousijn H., Woolrich M., Nobre A.C. Frontoparietal and cingulo-opercular networks play dissociable roles in control of working memory // Journal of Cognitive Neuroscience. – 2015. – Vol. 27. – No. 10. – P. 2019–2034.
  67. Wu T., Wang X., Wu Q., Spagna A., Yang J., Yuan C., Wu Y., Gao Z., Hof P.R., Fan J. Anterior insular cortex is a bottleneck of cognitive control // NeuroImage. – 2019. – Vol. 195. – P. 490–504.
  68. Zink N., Lenartowicz A., Markett S. A new era for executive function research: On the transition from centralized to distributed executive functioning // Neuroscience & Biobehavioral Reviews. – 2021. – Vol. 124. – P. 235–244.
Скачать в формате PDF

DOI: 10.24412/2073-0861-2021-3-71-81

Дата публикации в журнале: 30.09.2021

Ключевые слова: когнитивный контроль; управляющие функции; осцилляторная активность; функциональная связность

Доступно в on-line версии с: 30.09.2021

  • Для цитирования статьи:
Номер 3, 2021