Theoretical and Experimental Psychology
ISSN 2073-0861
eISSN 2782-5396
En Ru
ISSN 2073-0861
eISSN 2782-5396
Articles

The Role of Oscillatory Brain Activity in Cognitive Control of Attention

Abstract

The article presents information on the psychophysiological mechanisms of the functioning of cognitive control of attention. It is shown that, in addition to the features of the structural organization, control of attention is heavily supported by the properties of the spatio-temporal dynamics of the functional connections of the brain. The role of dynamic functional connectivity and its variability over time as a source of individual differences in cognitive control is emphasized.

References

  1. Alba G, Vila J, Rey B, Montoya P, Muñoz MÁ. The relationship between heart rate variability and electroencephalography functional connectivity variability is associated with cognitive flexibility. Frontiers in Human Neuroscience 2019; 13: 64. doi: 10.3389/fnhum.2019.00064.
  2. Ambrosini E, Arbula S, Rossato C, Pacella V, Vallesi A. Neuro-cognitive architecture of executive functions: A latent variable analysis. Cortex 2019; 119:441–456.
  3. Ambrosini E, Vallesi A. Asymmetry in prefrontal resting-state EEG spectral power underlies individual differences in phasic and sustained cognitive control. NeuroImage 2016; 124(Pt. A):843–857.
  4. Arviv O, Goldstein A, Shriki O. Near-сritical dynamics in stimulus-evoked activity of the human brain and its relation to spontaneous resting-state activity. Journal of Neuroscience 2015; 35(41):13927–13942.
  5. Atasoy S, Deco G, Kringelbach ML. Playing at the Edge of Criticality: Expanded Whole- Brain Repertoire of Connectome-Harmonics. In: Tomen N, Herrmann J, Ernst U (eds). The Functional Role of Critical Dynamics in Neural Systems. Springer Series on Bio- and Neurosystems. Springer, Cham 2019; 11:27–45. doi: 10.1007/978-3-030-20965-0_2.
  6. Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks. Nature Reviews Neuroscience 2018; 19(1):17–33.
  7. Baldassarre A, Lewis CM, Committeri G, Snyder AZ, Romani GL, Corbetta M. Individual variability in functional connectivity predicts performance of a perceptual task. Proceedings of the National Academy of Sciences of USA 2012; 109(9):3516–3521.
  8. Bertolero MA, Yeo BTT, D’Esposito M. The modular and integrative functional architecture of the human brain. Proceedings of the National Academy of Sciences of the United States of America 2015; 112(49):E6798– E6807.
  9. Botvinick M, Braver T. Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology 2015; 66(1):83–113.
  10. Botvinick MM, Cohen JD. The сomputational and neural basis of cognitive control: Charted territory and new frontiers. Cognitive Science 2014; 38(6):1249–1285.
  11. Braver TS, Kizhner A, Tang R, Freund MC, Etzel JA. The dual mechanisms of cognitive control project. Journal of Cognitive Neuroscience 2021; 33(9):1990–2015.
  12. Cai W, Chen T, Ryali S, Kochalka J, Li C-SR, Menon V. Causal interactions within a frontal- cingulate-parietal network during cognitive control: Convergent evidence from a multisite- multitask investigation. Cerebral Cortex 2016; 26(5):2140–2153.
  13. Carter CS, Krug MK. Dynamic Сognitive Сontrol and Frontal-Cingulate Interactions.Cognitive Neuroscience of Attention, 2nd ed. New York, NY, US: Guilford Press, 2012:89–98.
  14. Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences 2014; 18(8):414–421.
  15. Cocchi L, Gollo LL, Zalesky A, Breakspear M. Criticality in the brain: A synthesis of neurobiology, models and cognition. Progress in Neurobiology 2017; 158:132–152.
  16. Cocchi L, Zalesky A, Fornito A, Mattingley JB. Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences 2013; 17(10):493–501.
  17. Cooper PS, Darriba Á, Karayanidis F, Barceló F. Contextually sensitive power changes across multiple frequency bands underpin cognitive control. NeuroImage 2016; 132:499–511.
  18. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 2002; 3(3):201–215.
  19. Vries IEJ de, Slagter HA, Olivers CNL. Oscillatory control over representational states in working memory. Trends in Cognitive Sciences 2020; 24(2):150–162.
  20. Deary IJ, Cox SR, Hill WD. Genetic variation, brain, and intelligence differences. Molecular Psychiatry, 2021. doi: 10.1038/s41380-021- 01027-y. Online ahead of print.
  21. Deco G, Jirsa VK. Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors. Journal of Neuroscience 2012; 32(10):3366–3375.
  22. Douw L, Wakeman DG, Tanaka N, Liu H, Stufflebeam SM. State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility. Neuroscience 2016; 339:12–21.
  23. Elton A, Gao W. Task‐related modulation of functional connectivity variability and its behavioral correlations. Human Brain Mapping 2015; 36(8):3260–3272.
  24. Engle RW. Working memory and executive attention: A revisit. Perspectives on Psychological Science 2018; 13(2):190–193.
  25. Fingelkurts AA, Fingelkurts AA, Neves CFH. Consciousness as a phenomenon in the operational architectonics of brain organization: Criticality and self-organization considerations: Emergent Critical Brain Dynamics. Chaos, Solitons & Fractals 2013; 55:13–31.
  26. Friedman NP, Miyake A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure: Is a «single» brain model sufficient? Cortex 2017; 86:186–204.
  27. Friedman NP, Miyake A, Young SE, DeFries JC, Corley RP, Hewitt JK. Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General 2008; 137(2):201–225.
  28. Fries P. Rhythms for сognition: Communication through coherence. Neuron 2015; 88(1):220–235.
  29. Friese U, Daume J, Göschl F, König P, Wang P, Engel AK. Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control. Scientific Reports 2016; 6: 32775. doi: 10.1038/srep32775.
  30. Fuster J. The Prefrontal Cortex. Academic Press, 2015: 461.
  31. Goldman-Rakic PS. Architecture of the prefrontal cortex and the central executive. Annals of the New York Academy of Sciences 1995; 769(1):71–84.
  32. Gordon S, Todder D, Deutsch I, Garbi D, Getter N, Meiran N. Are resting state spectral power measures related to executive functions in healthy young adults? Neuropsychologia 2018; 108:61–72.
  33. Gratton G, Cooper P, Fabiani M, Carter CS, Karayanidis F. Dynamics of cognitive control: Theoretical bases, paradigms, and a view for the future. Psychophysiology 2018; 55(3):e13016. doi: 10.1111/psyp.13016.
  34. Heidlmayr K, Kihlstedt M, Isel F. A review on the electroencephalography markers of Stroop executive control processes. Brain and Cognition 2020; 146:105637. doi: 10.1016/j.bandc.2020.105637.
  35. Hughes C. Changes and challenges in 20 years of research into the development of executive functions. Infant and Child Development 2011; 20(3):251–271.
  36. Irrmischer M, Poil S-S, Mansvelder HD, Intra FS, Linkenkaer‐Hansen K. Strong long-range temporal correlations of beta/gamma oscillations are associated with poor sustained visual attention performance. European Journal of Neuroscience 2018; 48(8):2674–2683.
  37. Jamadar S, Thienel R, Karayanidis F. Task switching processes. Brain Mapping: An Encyclopedic Reference 2015; 3:327–335.
  38. Jiang L, Qiao K, Sui D, Zhang Z, Dong H-M. Functional criticality in the human brain: Physiological, behavioral and neurodevelopmental correlates. PloS One 2019; 14(3):e0213690. doi: 10.1371/journal.pone.0213690.
  39. Kitzbichler MG, Smith ML, Christensen SR, Bullmore E. Broadband criticality of human brain network synchronization. PLoS Computational Biology 2009; 5(3):e1000314. doi: 10.1371/journal.pcbi.1004174.
  40. Kovacs K, Conway ARA. Process overlap theory: A unified account of the general factor of intelligence. Psychological Inquiry 2016; 27(3):151–177.
  41. Kovacs K, Conway ARA. What is IQ? Life beyond «General Intelligence». Current Directions in Psychological Science 2019; 28(2):189–194.
  42. Krönke K-M, Wolff M, Shi Y, Kräplin A, Smolka MN, Bühringer G, Goschke T. Functional connectivity in a triple-network saliency model is associated with real-life self-control. Neuropsychologia 2020; 149:107667. doi: 10.1016/j.neuropsychologia.2020.107667.
  43. Lee H, Golkowski D, Jordan D, Berger S, Ilg R, Lee J, Mashour GA, Lee U, Avidan MS, Blain-Moraes S, Golmirzaie G, Hardie R, Hogg R, Janke E, Kelz MB, Maier K, Mashour GA, Maybrier H, McKinstry-Wu A, Muench M, Ochroch A, Palanca BJA, Picton P, Schwarz EM, Tarnal V, Vanini G, Vlisides PE. Relationship of critical dynamics, functional connectivity, and states of consciousness in large-scale human brain networks. NeuroImage 2019; 188:228–238.
  44. Lemire-Rodger S, Lam J, Viviano JD, Stevens WD, Spreng RN, Turner GR. Inhibit, switch, and update: A within-subject fMRI investigation of executive control. Neuropsychologia 2019; 132:107134. doi: 10.1016/j.neuropsychologia. 2019.107134.
  45. Mahjoory K, Cesnaite E, Hohlefeld FU, Villringer A, Nikulin VV. Power and temporal dynamics of alpha oscillations at rest differentiate cognitive performance involving sustained and phasic cognitive control. NeuroImage 2019; 188:135–144.
  46. Massobrio P, Pasquale V. Complexity of Network Connectivity Promotes Self-organized Criticality in Cortical Ensembles. The Functional Role of Critical Dynamics in Neural Systems. Springer Series on Bio- and Neurosystems. Eds. N. Tomen, J.M. Herrmann, U. Ernst. Cham: Springer International Publishing, 2019:47–68.
  47. Menon V, D’Esposito M. The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2021; doi: 10.1038/ s41386-021-01152-w.
  48. Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience 2012; 12(2):241–268.
  49. Nigg JT. Annual Research Review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. Journal of Child Psychology and Psychiatry, and allied disciplines 2017; 58(4):361–383.
  50. Nikulin VV, Brismar T. Long-range temporal correlations in electroencephalographic oscillations: Relation to topography, frequency band, age and gender. Neuroscience 2005; 130(2):549–558.
  51. Palva S, Palva JM. New vistas for α-frequency band oscillations. Trends in Neurosciences 2007; 30(4):150–158.
  52. Palva S, Palva JM. Functional roles of alpha- band phase synchronization in local and large-scale cortical networks. Frontiers in Psychology 2011; 2:204. doi: 10.3389/ fpsyg.2011.00204.
  53. Plomin R, Kovas Y. Generalist genes and learning disabilities. Psychological Bulletin 2005; 131(4):592–617.
  54. Poil S-S, Hardstone R, Mansvelder HD, Linkenkaer-Hansen K. Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. Journal of Neuroscience 2012; 32(29):9817–9823.
  55. Rubinov M, Sporns O, Thivierge J-P, Breakspear M. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Computational Biology 2011; 7(6):e1002038. doi: 10.1371/journal. pcbi.1002038.
  56. Sadaghiani S, D’Esposito M. Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cerebral Cortex 2015; 25(9):2763–2773.
  57. Sadaghiani S, Kleinschmidt A. Brain networks and α-oscillations: Structural and functional foundations of cognitive control. Trends in Cognitive Sciences 2016; 20(11):805–817.
  58. Shin C-W, Kim S. Self-organized criticality and scale-free properties in emergent functional neural networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys 2006; 74(4. Pt. 2):045101. doi: 10.1103/PhysRevE.74.045101.
  59. Shine JM, Poldrack RA. Principles of dynamic network reconfiguration across diverse brain states: Brain Connectivity Dynamics. Neuro- Image 2018; 180:396–405.
  60. Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex 2012; 22(1):158–165.
  61. Song B, Ma N, Liu G, Zhang H, Yu L, Liu L, Zhang J. Maximal flexibility in dynamic functional connectivity with critical dynamics revealed by fMRI data analysis and brain network modelling. Journal of Neural Engineering 2019; 16(5):056002. doi: 10.1088/1741-2552/ab20bc.
  62. Spitzer B, Haegens S. Beyond the status quo: A role for beta oscillations in endogenous content (re)activation. eNeuro 2017; 4(4): ENEURO.0170-17.2017. doi: 10.1523/ENEURO. 0170-17.2017.
  63. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of USA 2008; 105(34):12569–12574.
  64. Stuss DT, Benson DF. The Frontal Lobes and Control of Cognition and Memory. The Frontal Lobes Revisited. Psychology Press, 1987.
  65. Van Diepen RM, Foxe JJ, Mazaheri A. The functional role of alpha-band activity in attentional processing: the current zeitgeist and future outlook: Attention & perception. Current Opinion in Psychology 2019; 29:229–238.
  66. Wallis G, Stokes M, Cousijn H, Woolrich M, Nobre AC. Frontoparietal and cingulo-opercular networks play dissociable roles in control of working memory. Journal of Cognitive Neuroscience 2015; 27(10):2019–2034.
  67. Wu T, Wang X, Wu Q, Spagna A, Yang J, Yuan C, Wu Y, Gao Z, Hof PR, Fan J. Anterior insular cortex is a bottleneck of cognitive control. NeuroImage 2019; 195:490–504.
  68. Zink N, Lenartowicz A, Markett S. A new era for executive function research: On the transition from centralized to distributed executive functioning. Neuroscience & Biobehavioral Reviews 2021; 124:235–244.
PDF, ru

Accepted date: 09/30/2021

Keywords: cognitive control; executive functions; oscillatory activity; functional connectivity

Available in the on-line version with: 30.09.2021

  • To cite this article:
Issue 3, 2021